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In this session, we
will dive deeper
Into the single- and
two-qubit gates we
have discovered

last time




Agenda

1. A Brief Introduction to Quantum Mechanics
« A short introduction to quantum mechanics is given to make this training self-contained.



A Brief Introduction to Quantum Mechanics

* Information can be processed with complex vectors & linear operators (matrices).

* Quantum mechanics describes the microscopic world, where states are
represented by complex vectors and manipulations (gates) of the states are
represented by matrices.

* Rule 1: A guantum state is described by a vector |y) € C", where n is a positive
integer. |Y) is normalized and a linear combination (superposition) of two vectors
is another vector ¢, |1;) + ¢, |y,) € C™.

« Rule 2: For any physical quantity a (observable), there is a corresponding
Hermitian matrix A (A* = A). Upon measurement of a, the outcome is one of the
real numbers (eigenvalue) associated with 4 and the state right after the
measurement is a special vector (eigenvector) corresponding to the eigenvalue.
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1. A Brief Introduction to Quantum Mechanics

- Rule 3: Among observables, energy is most important and deserves a special name, the
Hamiltonian. It tells the state |i) how to evolve In time:

ih% |lY) = H|Y) (the Schrodinger equation)
where h is a constant known as the Planck constant. Often put 7 = 1.
Remarks:
« e |yY) ~ ) .There is no way to measure the phase.
« The Schrodinger equation is formally solved as
[P (t)) = e "t |1y(0)) when H is independent of time.

« If the Hamiltonian is H, for the 18t duration t, ,H, for 2"d duration t, ,.. ,Hy for the N'h
duration t,, then

[Y(@)) = e7HININ . eTHHat2e =]y (0)).
 Each e~tHktk roughly corresponds to a gate
In quantum computing.

Hy Hl—

rl ,2 ’n
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Exercise

e Let |¢(0)) — ((1)), H, =ao, H, = b o, ‘wWhere ay ((1) (1)) and o ((1) _01)

Suppose H, acts first for a time-duration t; = then H, acts for a tlme duration t,
= — F|nd the state | (t)) attime t = t; + t,. You may put 4~ = 1 and use

e!*%=cosal, +isina gy .

Solution: e~2%[(0)) = o, [1(0)) = @ =)

@)= L)O-F0=0)

Note: et * %k = cos a I, + i sin a oy, iS unitary. e * ke~t % = |, This is true for any
gate.
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Qubit Gates and Quantum Circuit

* Any quantum gate/circuit U maps a quantum state [y;,,) to a quantum state | ,,;)
= Ulin).

It must be unitary since (Y, Vous) = Wi lU U|Y;i) =1 > UU = 1.

Immediate implication: Quantum computing must be reversible. There exists U™
= U*.

Reversible processes do not produce heat. (Entropy is conserved.)

Typical HPC costs 10~30 MW power.

IQM 50QB QC costs 30 kW power, mostly from refrigerator and electronics.

« Number of output qubits must be the same as the number of input qubits.



-Quantum Parallelism

e Let f:{0,1}" - {0,1}™, |¥) = 292;61 cx|x) and Us be a linear operator representing f
as Ur|x)|0) = |x)|f(x)). Then Ur acts on |¥)|0) as Ur|¥)|0)

= Y225  c, Ur|x)|0) = 3225 ¢, |x)| £ (x)). Question: Is Urlx) = |f(x)) acceptable?

Note that | f(x)) has been evaluated for 2" different x simultaneously (quantum
parallelism).

y 10)]0) = [0}]£(0))
[1)10) = 1) £ (1))
Ur:12)10) = |2)If(2))

-

2" — 1)|0) — |27 = 1)|f (2" — 1))
by, g single action of Uy ~ 2"-core CPU.



Exercise

* Let f(x) =3*mod 7 and U¢: |x)[0) = |x )|f(x)) .Let |¥) = \/%2,76:0 |x). Write down
Ur|W)|0) explicitly.

 Solution .

Ur|'¥)|0) =ﬁ(l0>ll> + [1)[3) +12)]2) + |3)|6) + [4)|4) + [5)[5) + |6)|1) +|7)|3))
f(x) = 3* mod 7 is a periodic function
of period 6.
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Agenda

2. One-Qubit Gates

« Quantum gates are quantum counterparts of classical gates such as NOT, OR and
AND.

* Here simple quantum gates acting on 1-qubit are introduced.



One-Qubit Gates

« A quantum gate that acts on a single qubit is called a 1-qubit gate.

input
|l/jin> o l]
input
U
P 1

output

U-

* Recall |0) = ((1)) and [1) = ((1))

»x= (7 1) x10) = [1) & X[1) = |0). X & NOT.

1 0
1 0

The line denotes a qubit. Time

[You) = Ulh,)  flies from left to right.

output

|lpout> — U2 Ulll/)in>

¢« 7 = (O _1); Z|0) = |0) & Z|1) = —|1). No classical counterpart.

Y = (—01 (l)) Y = —i ZX. No classical counterpart.
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 Hadamard gate H = i(1 : ) It maps |0) and |1) to superposition states.

2\ -1
H|0) = = (|0) + [1)), H|1) = = (10) — [1)).
» |dentity gate I = ((1) (1)) doesnothingg — { —— =
« We write U; & U, when U, acts on the first qubit and U, on the second qubit.
90 Uo ——
') input output (U1 & Up)|'F)
g — U ——

* g, and q, denote the first qubit and the second qubit and not the qubit states. |¥)
IS entangled in general.

If |Lp> — |1/)1)|1/;0), (U1 03¢ U0)|1/J1>|1/J0) — (U1|1/)1>) 03¢ (U0|1/J0>)-
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‘Tensor Product

* Tensor product of matrices.
 Let A = (2ij) be an m x n matrix and let B = (b;;) be a p x ¢ matrix. Then A @ B is

11 anB
an mp X ng matrixdefinedasA@B=(aijB)=< S : )
B .. B
0 o oy (6 B G SN[ 8 LS
« Example: 0% )= — — )= —
S U GO B L GV R
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1€ o 2o ,
aewa® ()= C) ¢ 0)-()=(2)an <§>®<i>=(-;f)

* (A®B): (lu) ® [v)) = (Alu)) ® (B|v)) .
c (AQB)-(CRD)=(A-C)Q (B-D) in general whenever the matrix product is
well defined.

» Exercise: Evaluate \/—15(1 _11) X (_11 _11) and \/—15(_11) ®\/i§(_11)
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3. Two-Qubit Gates

* Two-qubit gates have two inputs and two outputs. They are necessary to entangle
tensor product states.

« Any unitary gate acting on an n-qubit state (a 2" x 2" big matrix) can be
decomposed into 1-qubit gates and 2-qubit gates.

| QM
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Two-Qubit Gates

Classical logic circuits require two-bit gates such as NAND and XOR for universality.
This is also true for quantum circuits. Two-qubit gates are required for universal quantum

computation. |y) ) r®y=r+y (mod?2)
 Examples l 0©0=0
| x) ® xDy) .
1 0 0 O 1@1=0
ey =0 0 0 1V Usnorlx)y) = |x @ y)y) . Uenor flips |x) if [y) = |1) .
CNOT . . . .
0 010 Does nothing to |x) if |y) = |0) .Similar to XOR.
O 1 0 O
1 0 0 0 ) |[¥)
O 0 1 O
* Uswap = 01 0 0 Uswap ) @) = [p) ). ><
0O 0 0 1 |l/)> |¢>
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Exercise

 Verify that Uqyor maps |00) — [00),|01) = |11),[10) — [10),]|11) — |01).
 Verify that Ugyap maps |00) = |00),|01) = |10),]|10) - |01),]|11) — |11).
Let |W) = co|00) + co1|01) + ¢14110) + c11]|11) .Find Ucyorl¥) and Ugwap| P).

Verifythat Uonor =1, Q Py + X Q P; ,where P, = |0){(0| and P; = |1)(1]| are called the
projection operators.

-]

Let UCZ — 12 ® PO + 7 ® Pl ShOW that UCZ — (H ® IZ)UCNOT(H ® 12) ,Whel’e H |S the
Hadamard gate. The symbol of Uy is

Note that I, ® P +Z & Py U is a native quantum gate of
=PRI +P; ®Z. an IQM quantum computer.
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Two-Qubit Gates

« Universality Theorem: Any n-qubit unitary (€ U(2")) gate can be decomposed into
one-qubit gates and CNOT gates.

The proof is highly technical. See Nielsen & Chuang or Nakahara & Ohmi.

« CNOT above may be replaced by most 2-qubit gates. The SWAP gate and tensor
products of 1-qubit gates are exceptions.

* Two-qubit gates are necessary to entangle tensor product states.

0) — H 1 . 1
: l 50100y + 1), Exercise: [) = = (100) £ 1)) and

10) ) —D v, ) = %(ml) + |10)) are called the
\/_El()) & (|0) + |1)) Bell states. Find quantum circuits that

generate |®_) and |¥, ) from |00).




— Summary

* Any quantum circuit can be decomposed
Into one-qubit gates and two-qubit gates.
The set of one-qubit gates and most two-

gubit gates needs to be universal.

* A universal gate set for IQM is CZ and
PRX (phased X rotation)

« Decomposition of a given n-qubit circuit

into 1- and 2-qubit gates are far from

unique. Optimizing the number of gates is

an important issue for efficient
implementation of quantum algorithms.

Optimization depends on QPU topology.
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