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In this session, we 
will dive deeper 

into the single- and 
two-qubit gates we 

have discovered 
last time
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1. A Brief Introduction to Quantum Mechanics

• A short introduction to quantum mechanics is given to make this training self-contained.

2. One-Qubit Gates

• Quantum gates are quantum counterparts of classical gates such as NOT, OR and AND. 

• Here simple quantum gates acting on 1-qubit are introduced. Tensor product is 
mathematically defined.

3. Two-Qubit Gates 

• Two-qubit gates have two inputs and two outputs. They are necessary to entangle tensor 
product states.

• Any unitary gate acting on an 𝑛-qubit state (a 2𝑛 × 2𝑛 big matrix) can be decomposed into 
1-qubit gates and 2-qubit gates. 

Agenda
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• Information can be processed with complex vectors & linear operators (matrices). 

• Quantum mechanics describes the microscopic world, where states are 

represented by complex vectors and manipulations (gates) of the states are 

represented by matrices. 

• Rule 1: A quantum state is described by a vector 𝜓 ∈ ℂ𝑛, where 𝑛 is a positive 

integer. |𝜓⟩ is normalized and a linear combination (superposition) of two vectors 

is another vector 𝑐1 𝜓1 + 𝑐2 𝜓2 ∈ ℂ𝑛. 

• Rule 2:  For any physical quantity 𝑎 (observable), there is a corresponding 

Hermitian matrix 𝐴 (𝐴∗ = 𝐴). Upon measurement of 𝑎, the outcome is one of the 

real numbers (eigenvalue) associated with 𝐴 and the state right after the 

measurement is a special vector (eigenvector) corresponding to the eigenvalue. 

A Brief Introduction to Quantum Mechanics
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• Rule 3:  Among observables, energy is most important and deserves a special name, the 
Hamiltonian. It tells the state 𝜓 how to evolve in time:

                             𝑖ℏ
𝑑

𝑑𝑡
𝜓 = 𝐻 𝜓 (the Schrödinger equation) 

   where ℏ is a constant known as the Planck constant. Often put ℏ = 1. 

Remarks: 

• 𝑒𝑖𝛼 𝜓 ∼ 𝜓  .There is no way to measure the phase.

• The Schrödinger equation is formally solved as

𝜓 𝑡 = 𝑒−𝑖𝐻𝑡 𝜓 0 when 𝐻 is independent of time. 

• If the Hamiltonian is 𝐻1 for the 1st  duration 𝑡1 ,𝐻2 for 2nd duration 𝑡2  ,… , 𝐻𝑁 for the 𝑁th 
duration 𝑡𝑁 , then

𝜓 𝑡 = 𝑒−𝑖𝐻𝑁𝑡𝑁 … 𝑒−𝑖𝐻2𝑡2𝑒−𝑖𝐻1𝑡1 𝜓 0 .     

• Each 𝑒−𝑖𝐻𝑘𝑡𝑘 roughly corresponds to a gate 

   in quantum computing.

1. A Brief Introduction to Quantum Mechanics

𝐻1 𝐻2 𝐻𝑛
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• Let 𝜓 0 =
1
0

, 𝐻1 = 𝑎 𝜎𝑥 ,𝐻2 = 𝑏 𝜎𝑧 ,where 𝜎𝑦 =
0 1
1 0

and 𝜎𝑧 =
1 0
0 −1

 .

Suppose 𝐻1 acts first for a time-duration 𝑡1 =
𝜋

2
then 𝐻2 acts for a time-duration 𝑡2

=
𝜋

4
. Find the state 𝜓 𝑡 at time 𝑡 = 𝑡1 + 𝑡2. You may put ℏ = 1 and use 

𝑒𝑖 𝛼 𝜎𝑘= cos 𝛼 𝐼2 + 𝑖 sin 𝛼 𝜎𝑘 .

Solution: 𝑒−
𝑖𝜋

2
𝜎𝑥 𝜓 0 = 𝜎𝑥 𝜓 0 =

0 1
1 0

1
0

=
0
1

.

𝑒−
𝑖𝜋

4
𝜎𝑧 0

1
= 𝑒−

𝑖𝜋

4 0

0 𝑒
𝑖𝜋

4

0
1

= 𝑒
𝑖𝜋

4
0
1

≃
0
1

.

Note: 𝑒𝑖 𝛼 𝜎𝑘 = cos 𝛼 𝐼2 + 𝑖 sin 𝛼 𝜎𝑘 is unitary. 𝑒𝑖 𝛼 𝜎𝑘𝑒−𝑖 𝛼 𝜎𝑘 = 𝐼. This is true for any 
gate.

Exercise
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• Any quantum gate/circuit 𝑈 maps a quantum state |𝜓𝑖𝑛⟩ to a quantum state 𝜓𝑜𝑢𝑡
= 𝑈|𝜓𝑖𝑛⟩.

• It must be unitary since 𝜓𝑜𝑢𝑡 𝜓𝑜𝑢𝑡 = 𝜓𝑖𝑛 𝑈∗𝑈 𝜓𝑖𝑛 = 1 → 𝑈∗𝑈 = 𝐼. 

• Immediate implication: Quantum computing must be reversible. There exists 𝑈−1

= 𝑈∗.

• Reversible processes do not produce heat. (Entropy is conserved.)  

• Typical HPC costs 10∼30 MW power.

• IQM 50QB QC costs 30 kW power, mostly from refrigerator and electronics.

• Number of output qubits must be the same as the number of input qubits.

Qubit Gates and Quantum Circuit
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• Let 𝑓: {0,1}𝑛 → 0,1 𝑚 , Ψ = σ𝑥=0
2𝑛−1 𝑐𝑥|𝑥⟩ and 𝑈𝑓 be a linear operator representing 𝑓 

as 𝑈𝑓 𝑥 0 = 𝑥 |𝑓 𝑥 ⟩. Then 𝑈𝑓 acts on Ψ |0⟩ as 𝑈𝑓 Ψ |0⟩  

=  σ𝑥=0
2𝑛−1 𝑐𝑥𝑈𝑓 𝑥 0 = σ𝑥=0

2𝑛−1 𝑐𝑥 𝑥 𝑓(𝑥) . Question: Is 𝑈𝑓 𝑥 = |𝑓 𝑥 ⟩ acceptable?

Note that 𝑓(𝑥) has been evaluated for 2𝑛 different 𝑥 simultaneously (quantum     

parallelism). 

•  0 0 ↦ 0 𝑓 0

1 0 ↦ 1 𝑓 1

𝑈𝑓: 2 0 ↦ 2 𝑓 2

⋮ ↦ ⋮

|2𝑛 − 1⟩|0⟩ ↦ |2𝑛 − 1⟩|𝑓(2𝑛 − 1)⟩

by a single action of 𝑈𝑓 ∼ 2𝑛-core CPU.

Quantum Parallelism
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• Let 𝑓 𝑥 = 3𝑥 mod 7 and 𝑈𝑓: 𝑥 0 ↦ 𝑥 |𝑓 𝑥 ⟩ .Let Ψ =
1

8
σ𝑥=0

7 |𝑥⟩ . Write down 

𝑈𝑓 Ψ 0 explicitly.

• Solution

𝑈𝑓 Ψ |0⟩ =
1

8
(|0⟩ 1 + 1 3 + 2 2 + 3 6 + 4 4 + 5 5 + 6 1 + 7 |3⟩)

𝑓 𝑥 = 3𝑥 mod 7 is a periodic function

of period 6.

Exercise
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1. A Brief Introduction to Quantum Mechanics

• A short introduction to quantum mechanics is given to make this training self-
contained.

2. One-Qubit Gates

• Quantum gates are quantum counterparts of classical gates such as NOT, OR and 
AND. 

• Here simple quantum gates acting on 1-qubit are introduced.

3. Two-Qubit Gates 

• Two-qubit gates have two inputs and two outputs. They are necessary to entangle 
tensor product states.

• Any unitary gate acting on an 𝑛-qubit state (a 2𝑛 × 2𝑛 big matrix) can be 
decomposed into 1-qubit gates and 2-qubit gates. 

Agenda
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• A quantum gate that acts on a single qubit is called a 1-qubit gate. 

         

• Recall

• 𝑋 =
0 1
1 0

. 𝑋 0 = 1  & 𝑋 1 = |0⟩. 𝑋  NOT. 

• 𝑍 =
1 0
0 −1

; 𝑍 0 = 0  & 𝑍 1 = − 1 . No classical counterpart. 

• 𝑌 =
0 𝑖

−𝑖 0
. 𝑌 = −𝑖 𝑍𝑋. No classical counterpart.

One-Qubit Gates

The line denotes a qubit. Time 

flies from left to right.|𝜓in⟩ |𝜓out⟩ = 𝑈|𝜓in⟩

|𝜓in⟩ 
𝜓out = 𝑈2𝑈1|𝜓in⟩

0 = 1
0

and 1 = 0
1 This is how it

looked last time
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• Hadamard gate 𝐻 =
1

2

1 1
1 −1

. It maps 0  and 1  to superposition states.

  𝐻 0 =
1

2
(|0⟩ + |1⟩), 𝐻|1⟩ =

1

2
( 0 − |1⟩). 

• Identity gate 𝐼 =
1 0
0 1

 does nothing.  

• We write 𝑈1 ⊗ 𝑈0 when 𝑈1 acts on the first qubit and 𝑈0 on the second qubit.

Ψ  (𝑈1 ⊗ 𝑈0)|Ψ⟩

• 𝑞1 and 𝑞0 denote the first qubit and the second qubit and not the qubit states. |Ψ⟩ 
is entangled in general. 

   If Ψ = 𝜓1 |𝜓0⟩, 𝑈1 ⊗ 𝑈0 𝜓1 𝜓0 = 𝑈1 𝜓1 ) ⊗ (𝑈0|𝜓0⟩).  

𝑞0

𝑞1
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• Tensor product of matrices.

• Let 𝐴 = 𝑎𝑖𝑗  be an 𝑚 × 𝑛 matrix and let 𝐵 = 𝑏𝑖𝑗  be a 𝑝 × 𝑞 matrix. Then 𝐴 ⊗ 𝐵 is 

an 𝑚𝑝 × 𝑛𝑞 matrix defined as 𝐴 ⊗ 𝐵 = 𝑎𝑖𝑗𝐵 =
𝑎11𝐵 … 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 … 𝑎𝑚𝑛𝐵

.

• Example: 
0 1
1 0

⊗
1 0
0 −1

=
0 ×

1 0
0 −1

1 ×
1 0
0 −1

1 ×
1 0
0 −1

0 ×
1 0
0 −1

=

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

•
1
3

⊗
2
𝑖

=
1 ×

2
𝑖

3 ×
2
𝑖

=

2
𝑖
6
3𝑖

.

Tensor Product
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• [
0 1
1 0

⊗
1 0
0 −1

] ⋅ [
1
3

⊗
2
𝑖

] =

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⋅

2
𝑖
6
3𝑖

 =

6
−3𝑖

2
−𝑖

.

• Note that 
0 1
1 0

⋅
1
3

=
3
1

  ,
1 0
0 −1

⋅
2
𝑖

=
2

−𝑖
and 

3
1

⊗
2

−𝑖
=

6
−3𝑖

2
−𝑖

.

• 𝐴 ⊗ 𝐵 ⋅ (|𝑢⟩ ⊗ |𝑣⟩) = (𝐴|𝑢⟩) ⊗ (𝐵|𝑣⟩) .

• 𝐴 ⊗ 𝐵 ⋅ (𝐶 ⊗ 𝐷) = (𝐴 ⋅ 𝐶) ⊗ 𝐵 ⋅ 𝐷 in general whenever the matrix product is 
well defined.  

• Exercise: Evaluate  
1

2

1 1
1 −1

⊗
1 −1

−1 1
and 

1

2

1
−1

⊗
1

2

1
−𝑖

.
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1. A Brief Introduction to Quantum Mechanics

• A short introduction to quantum mechanics is given to make this training self-
contained.

2. One-Qubit Gates

• Quantum gates are quantum counterparts of classical gates such as NOT, OR and 
AND. 

• Here simple quantum gates acting on 1-qubit are introduced.

3. Two-Qubit Gates 

• Two-qubit gates have two inputs and two outputs. They are necessary to entangle 
tensor product states.

• Any unitary gate acting on an 𝑛-qubit state (a 2𝑛 × 2𝑛 big matrix) can be 
decomposed into 1-qubit gates and 2-qubit gates. 

Agenda
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• Classical logic circuits require two-bit gates such as NAND and XOR for universality.

• This is also true for quantum circuits. Two-qubit gates are required for universal quantum 
computation.

• Examples

• 𝑈CNOT =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

• 𝑈SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

    .𝑈SWAP 𝜓 𝜙 = 𝜙 𝜓 .

Two-Qubit Gates

𝑈CNOT 𝑥 𝑦 = |𝑥 ⊕ 𝑦⟩|𝑦⟩ . 𝑈CNOT flips |𝑥⟩ if 𝑦 = |1⟩ .

Does nothing to |𝑥⟩ if 𝑦 = |0⟩ .Similar to XOR.

|𝑥⟩ 

𝑦 𝑦

|𝑥 ⊕ 𝑦⟩

𝜓

𝜓

𝜙

𝜙
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• Verify that 𝑈CNOT maps 00 ↦ 00 , 01 ↦ 11 , 10 ↦ 10 , 11 ↦ 01 .

• Verify that 𝑈SWAP maps 00 ↦ 00 , 01 ↦ 10 , 10 ↦ 01 , 11 ↦ 11 .

• Let Ψ = 𝑐00 00 + 𝑐01 01 + 𝑐10 10 + 𝑐11|11⟩ .Find 𝑈CNOT Ψ and 𝑈SWAP Ψ .

• Verify that 𝑈CNOT = 𝐼2 ⊗ 𝑃0 + 𝑋 ⊗ 𝑃1 ,where 𝑃0 = 0 0 and 𝑃1 = 1 ⟨1| are called the 
projection operators.  

• Show that

• Let 𝑈CZ = 𝐼2 ⊗ 𝑃0 + 𝑍 ⊗ 𝑃1 .Show that 𝑈CZ = 𝐻 ⊗ 𝐼2 𝑈CNOT 𝐻 ⊗ 𝐼2  ,where 𝐻 is the 
Hadamard gate. The symbol of 𝑈CZ is                   

• Note that 𝐼2 ⊗ 𝑃0 + 𝑍 ⊗ 𝑃1                                                           

    = 𝑃0 ⊗ 𝐼2 + 𝑃1 ⊗ 𝑍.

Exercise

𝑈CZ is a native quantum gate of 

an IQM quantum computer.
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• Universality Theorem: Any 𝑛-qubit unitary (∈ 𝑈(2𝑛)) gate can be decomposed into 
one-qubit gates and CNOT gates.  

   The proof is highly technical. See Nielsen & Chuang or Nakahara & Ohmi. 

• CNOT above may be replaced by most 2-qubit gates. The SWAP gate and tensor 
products of 1-qubit gates are exceptions. 

• Two-qubit gates are necessary to entangle tensor product states.

                                             

•
1

2
(|00⟩ + |11⟩).

Two-Qubit Gates

|0⟩

|0⟩
1

2
0 ⊗ (|0⟩ + |1⟩)

Exercise: Φ± =
1

2
(|00⟩ ± |11⟩) and 

Ψ± =
1

2
(|01⟩ ± |10⟩) are called the 

Bell states. Find quantum circuits that 

generate Φ−  and Ψ±  from |00⟩.
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• Any quantum circuit can be decomposed 
into one-qubit gates and two-qubit gates. 
The set of one-qubit gates and most two-
qubit gates needs to be universal.

• A universal gate set for IQM is CZ and 
PRX (phased X rotation)

• Decomposition of a given 𝑛-qubit circuit 
into 1- and 2-qubit gates are far from 
unique. Optimizing the number of gates is 
an important issue for efficient 
implementation of quantum algorithms. 
Optimization depends on QPU topology.

Summary

QPU topology of IQM Garnet available via IQM 

Resonance
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