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How to work 
with qubits?
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Different ways to work with qubits

Gate-based quantum computingQuantum annealing

designed for particular 

optimization problems
designed for universal 

(quantum) computing
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• Bits are the foundation of conventional computers

Conventional computer: bits

0

1
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• Information processing is performed with the help of logical gates

Conventional computer: working with bits

0

1

NOT
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• Multiple gates form a circuit

• An algorithm is implemented in a sequence of gates

• Circuits are represented as a time sequence like musical notes

Conventional computer: algorithms

Bit 1

Bit 2
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Quantum computing: algorithms

1-qubit gate

2-qubit gate

Quantum operations
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Open https://bit.ly/iqm-1 

and investigate the effects of gate H and gate X !

Take it further: 

• Apply the Hadamard gate H two times in a row while choosing 0 and 1 as starting

values. Describe your observation! What does it mean for the information stored in 

the qubit?

Activity 1: Exploring the  H  gate 

https://bit.ly/iqm-1
https://bit.ly/iqm-1
https://bit.ly/iqm-1
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Activity 1: Bloch Sphere

Open 

https://www.iqmacademy.com/play/bloch/ 

and investigate the effects of gate H and 

gate X again! See what happens if you 

apply the H  gate twice.

https://www.iqmacademy.com/play/bloch/
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• Find the Bloch vectors with angles 

   (1) 𝜃 = 𝜋, 𝜙 = 0

   (2) 𝜃 = 𝜋/2, 𝜙 = 0

   (3) 𝜃 =
𝜋

2
, 𝜙 = −𝜋/2

• Find the complex vectors corresponding to these Bloch vectors.

 (1) 𝜃 = 𝜋, 𝜙 = 0: 𝜓 = |1⟩.

(2 ) 𝜃 = 𝜋/2, 𝜙 = 0: 𝜓 =  ( 0 + |1⟩)/√2. 

(3 ) 𝜃 =
𝜋

2
, 𝜙 = −𝜋/2: 𝜓 =  ( 0 − 𝑖|1⟩)/√2.

Exercise

𝜓 = cos
𝜃

2
0 + 𝑒𝑖𝜙 sin

𝜃

2
|1⟩
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A single-qubit quantum state 𝜓 can be described mathematically as

𝜓 = 𝑎 0 + 𝑏|1⟩ with 𝑎 2 + 𝑏 2 = 1 

with a, b ∈

Activity 1: Description of a quantum state

This is called a ket, 

Dirac notation for

vectors
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• Classical information processing uses a bit as a unit of information.
A bit takes a value 0 or 1.

• 𝑛 bits take one of 2𝑛 different values from 000…0 to 111…1.

• A qubit is a unit of quantum information. It is a vector living in ℂ2  .Basis vectors of ℂ2 are 

0 =
1
0

and 1 =
0
1

 .

• Thus, 𝜓 =
𝛼
𝛽 = 𝛼

1
0

+ 𝛽
0
1

 ,where 𝛼 2 and |𝛽|2 are the probabilities to measure | ⟩0
and | ⟩1  ,respectively  (therefore, 𝜓  is normalized: 𝛼 2 + 𝛽 2 = 1.)

• (ket) is a symbol for a column vector. With a general qubit state represented as 𝜓
= 𝑎0 0 + 𝑎1 1 , 𝑎0, 𝑎1 ∈ ℂ .0 0 ,1 1 . In this sense, 𝜓 is 0 and 1 simultaneously. 

Activity 1: Description of a quantum state
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When we write these vectors in polar 
coordinates, we get the Bloch sphere

Source: The Bloch sphere provides a useful means of visualizing the state of a... | Download Scientific Diagram (researchgate.net)

• Corresponding to 𝜓 , there is a “dual” vector 

⟨𝜓| = ത𝑎0, ത𝑎1 .

• We use the convention that |𝜓⟩ is normalized; 

𝜓 𝜓 = 𝑎0
2 + 𝑎1

2 = 1.

• The reason for this becomes clear later.

The coefficient of 0  

may be taken real.

https://www.researchgate.net/figure/The-Bloch-sphere-provides-a-useful-means-of-visualizing-the-state-of-a-single-qubit-and_fig1_335028508
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• Let 𝜓 = 2 0 + 𝑖 1 .

(1 ) Normalize 𝜓 .

(2 ) What is the probability of measuring |0⟩ when 𝜓 is measured.

 (3)    What is the probability of measuring |1⟩ when 𝜓 is measured.

Answer

(1) 𝜓 𝜓 = 5; 𝜓 =
1

5
2 0 + 𝑖|1⟩). 

(2)  𝑃 0 = 𝜓 0 0 𝜓 =
4

5
. 

(3)  𝑃 1 = 𝜓 1 1 𝜓 =
1

5
.

Exercise
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• Consider a system made of 2 qubits. If the state of the first qubit is 0 and the 
second qubit is |1⟩, the total state is written as 0 1 or 01 or  0 ⊗ |1⟩ .

• A state Ψ =
1

2
(|0⟩ 0 + 1 |0⟩) is decomposed as 

1

2
0 + 1 0 . It is a tensor 

product state or a product state. 

1

2
0 + 1 0

• Measure the first qubit → 50% 0 , 50% 1 . Measure the second qubit 
→ 100% 0 independently of the outcome of the first qubit. They are not 
correlated.

Multi-qubit Systems and Entanglement
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• With two qubits, the gate flips the second (target qubit) if the first 
(control qubit) is in state | ⟩1

• If the control qubit is in the | ⟩0  state, nothing happens to the target qubit..

• This gate is called CNOT (short for Controlled NOT)

Activity 2: A 2-qubit gate

16

https://bit.ly/iqm-2

▪ Activity 2: What happens, if the control qubit is in a superposition state of both | ⟩0  and | ⟩1 ?

▪ Open https://bit.ly/iqm-2 to check it out!

https://bit.ly/iqm-2
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• If the control qubit is in a superposition, the 
measurement result of the target qubit depends 
on which value the control qubit now assumes.

• This combination of gates "entangles" the two 
qubits.

• If the state of one of the qubits is then measured, 
the state of the other qubit is automatically 
known.

• Viewed as a whole, the two qubits have a well-
defined state, but the individual qubits cannot be 
assigned their own well-defined state.

• Only with entanglement is it possible to create 
truly arbitrary states

Activity 2 - Discussion
Hadamard and CNOT

17
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A two-qubit quantum state 𝜓 can be described mathematically as

𝜓 = 𝑎 00 + 𝑏 01 + 𝑐 10 + 𝑑 11

with 𝑎 2 + 𝑏 2 + 𝑐 2 + 𝑑 2 = 1 

The entangled state we just created can be written as

𝜓 = ൗ1
2

00 + ൗ1
2

11

Activity 2: Description of a two-qubit 
quantum state
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“Viewed as a whole, the two qubits have a well-defined state,
 but the individual qubits cannot be assigned their own well-defined state.”

Entanglement

19

▪ The state we generated was: 
1

2
| ⟩00 +

1

2
| ⟩11

▪ Let’s assume, it is comprised of two independent qubits, meaning we could write:

1

2
| ⟩00 +

1

√2
| ⟩11 =

?
(𝑎| ⟩0 + 𝑏| ⟩1 ) ⊗ (c| ⟩0 + 𝑑| ⟩1 )

1

2
| ⟩00 +

1

2
| ⟩11 =

?
𝑎𝑐| ⟩00 + 𝑎𝑑| ⟩01 +bc| ⟩10 + 𝑏𝑑|1 ⟩1

Comparing both sides yields to:
1

2
= 𝑎𝑐, 0 = 𝑎𝑑, 0 = 𝑏𝑐,

1

2
= 𝑏𝑑

Symbol for

tensor product
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• We have seen, the two qubits are entangled! If the1st qubit is measured 0, the 

2nd qubit is always measured 0. Two outcomes are correlated. This is true no 

matter how far the two qubits are separated. Faster than the speed of light 

propagation? No, nothing propagates.

• Entanglement plays an essential role in quantum computing. Entanglement is a 

purely quantum correlation and quantum computing takes advantage of this. 

• A two-qubit state is a vector ∈ ℂ4 . It is expanded in terms of 00 , 01 , 10 , 11 ;
Ψ = σ𝑖𝑘=0

1 𝑐𝑖1𝑖0
𝑖1𝑖0 = σ𝑥=0

3 𝑐𝑥 𝑥 . 𝑥 ∈ {0,1,2,3} is the decimal notation of 𝑖1𝑖0 2.

𝑐𝑥 ∈ ℂ, σ𝑥 𝑐𝑥
2 = 1.

Multi-qubit Systems and Entanglement

0 0

1 1
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• Which of the following states are product states? Decompose product states into 
component states and find the probability distributions of the measurement 
outcomes of these states.

1
1

2
01 + 10

2
1

2
01 − 00

3
1

2
( 01 − |10⟩)

Exercise
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Open https://bit.ly/iqm-3 and 

create a circuit that entangles all 

five qubits.

Take it further: 

• Remove all the gates (or reload the page) and check out the effects of 

a T gate. Use it without any other gate and then sandwich it between 

two Hadamard gates.

Activity 3 – More qubits, more fun

https://bit.ly/iqm-3
https://bit.ly/iqm-3
https://bit.ly/iqm-3
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• Two-qubit states cannot be visualized by two vectors on the Bloch sphere in 

general. It is possible only for product states. Recall that an entangled state cannot 

be factored into a product of two one-qubit states. 

• 𝑛-qubit system has 2𝑛 basis vectors { 00 … 00 , 00 … 01 , … , 11 … 11 } or 

{ 0 , 1 , … , 2𝑛 − 1 } in decimal notation. |Ψ⟩ = σ𝑥=0
2𝑛−1 𝑐𝑥|𝑥⟩ is a superposition of 2𝑛 

basis vectors.

Multi-qubit Systems and Entanglement



Quantum 
Computing Eras
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Quantum computers: 
NISQ era

Moderate 

number of 

qubits with 

limited 

connectivity 
(intermediate 
scale)

Limited circuit depth

Noisy (erroneous) 

operations

# gates in 

algorithm

Algorithm 

fidelity

1 99.9%

10 99.0%

100 90.5%

1000 36.8%

Error rate: 1/1000 = 0.1%
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Physical qubits
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Fault Tolerant 

Quantum 

Computers

(FTQC)

• Horizon: Fault Tolerant (FT) area

NISQ and FTQC

• Error correction is based on 

redundancy

• 1 single fault tolerant qubit 

requires multiple physical 

qubits

• Noise needs to be reduced 

below a certain threshold

Why so complex?

Now: 

Foundation
(IQM, Google, IBM, 

Rigetti, ….)

99

90

Connectivity of qubits, speed of

operations and other

parameters can bring down the

requirements
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Physical qubits
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Now: 

Foundation
(IQM, Google, IBM, 

Rigetti, ….)

• Horizon: Fault Tolerant (FT) area

NISQ and FTQC

NISQ Utility 

(NISQ Advantage)

•  But before that: NISQ Utility
(NISQ Advantage)

o Hybrid approaches

o Potential for NISQ quantum utility

o Solving tasks

o faster,

o better,
o or using less energy

Fault Tolerant 

Quantum 

Computers

(FTQC)

99,9

99

90



Conclusion
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Conclusion: Foundations

• Qubits can not only be in the two states | ⟩0 and | ⟩1 , but also in a superposition of 
| ⟩0 and | ⟩1 . In this case, they have a certain probability of being measured as | ⟩0 or 
| ⟩1 . However, a measurement destroys the superposition.

• Quantum computers use special quantum gates to manipulate the state of qubits.

• Even though the measurement results of a qubit are random, the qubit is still 
always in a precisely defined state.

• Two qubits can be made to interact with each other. If you then measure the state 
of one of the qubits, you automatically know the state of the other qubit.
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