Introduction to Quantum Computing

A lecture series by IQM and HS RM

Authors: Stefan Seegerer, Mikio Nakahara, Nikolay Tcholtchev

Last Updated 06/2025

Why think about different computing paradigms?

Sorting a list of numbers

Sorting a list of numbers

Sorting a list of numbers

Thinking about new computing paradigms can lead to more efficient solutions

There are problems, a classical computer cannot (efficiently) solve

Problem with current computers:

- Intractable problems
- Fundamental limits
- Time & power limits

Current approach is not scalable!

"Latest findings suggest global computing is more likely responsible for between 2.1% and 3.9% of greenhouse gas emissions."

Overview

- Computational complexity depends on the resource to implement the algorithm.
- Physical systems may be employed for information processing. They sometimes give different computational complexity than digital information processing.

https://www.miraikan.jst.go.jp/exhibitions/future/internet/

Photos courtesy of Miraikan - The National Museum of Emerging Science and Innovation

- Quantum mechanics describes microscopic systems, such as electrons and photons. A state is represented by a complex vector and an operation by a matrix.
- Quantum information processing and quantum computation employ quantum systems to store and process information, which may reduce computational complexity for some tasks.

Information is Physical. (R Landauer (IBM), 1991)

- Physics laws can be used for information processing/computation.
- Example: Evaluate the complete elliptic integral of the first kind

$$K(k) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - k^2 \sin^2 \phi}} d\phi \cdot K(k) = \frac{\pi}{2} \sum_{n=0}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 k^{2n}.$$

• Use physics. The period of a pendulum is $T = 4\sqrt{\frac{L}{g}K(k)}$, $k = \sin\frac{\theta_0}{2}$.

- It may take a few minutes to set up a pendulum.
 It is much shorter than the time required to build a digital computer from scratch.
- A physical system may be used as a computational resource. Its usage is limited in general though.

Complexity depends on the device for processing

- Complexity depends on a system to implement an algorithm.
- There are some algorithms whose complexity may be reduced if they are implemented with complex vectors and matrices acting on them.

• A quantum physics, the physics of the microscopic world, is described by complex

vectors and matrices. Let's use this system to execute such algorithms!

Quantum Information Processing

 Semiconductor devices also employ quantum physics to design but there are too many electrons to show quantum properties.

 We need a single electron, a single nucleus or a single photon to process information quantum mechanically. Preparation, control and measurement of such systems are challenging though.

 Thanks to the progress of nanotechnology, it is now possible to fabricate a nanoscopic system that follows the laws of quantum mechanics. Superconducting qubits (=quantum bit) employed in IQM quantum computers are an example of such devices.

Another Motivation for Quantum Computing

- Moore's law: The number of transistors that can be packed into a CPU is expected to double every two years.
- The size of one memory will become as small as an atom. Then quantum nature will manifest itself. Computation becomes probabilistic. Good or bad?
- Let's use quantum nature to improve computational complexity.

CC-BY 4.0 by Max Roser, Hannah Ritchie

Bits and Qubits

Classical Computer vs. Quantum Computer

Classical bit

2 distinct states

switch on/off

State can be measured repeatedly

Quantum bit

Superposition of 2 basis states

Point on the surface of a sphere

Measurement of the state will cause it to fall back to 0 and 1, no repeated measurement

Classical computer vs. Quantum computer

Quantum computers follow different rules than classical computers - those of quantum physics.

Bit vs. Qubit (quantum bit)

A bit can be either 0 or 1, while a qubit can be in a superposition: qubit can be both 0 and 1 at the same time. Measurement will yield either 0 or 1.

Two qubits can be entangled. Changing one directly impacts the other.

- → 1 qubit can be in a superposition of 2 basis states
- \rightarrow A 1 bit state can be just one out them

Basis states:

- C
- _ 1

Classical computer vs. Quantum computer

Quantum computers follow different rules than classical computers - those of quantum physics.

Bit vs. Qubit (quantum bit)

A bit can be either 0 or 1, while a qubit can be in a superposition: qubit can be both 0 and 1 at the same time. Measurement will yield either 0 or 1.

Two qubits can be entangled. Changing one directly impacts the other.

- → 2 qubits can be in a superposition of all 4 basis states
- → A 2-bit state can be just one out them

Basis states:

- 00
- 0
- 10
- 11

Classical computer vs. Quantum computer

Quantum computers follow different rules than classical computers - those of quantum physics.

Bit vs. Qubit (quantum bit)

A bit can be either 0 or 1, while a qubit can be in a superposition: qubit can be both 0 and 1 at the same time. Measurement will yield either 0 or 1.

Two qubits can be entangled. Changing one directly impacts the other.

Basis states:

- 000
- 100
- 010
- 110
- 001
- 101
- 011
- 111

Classical computer vs. Quantum computer

Quantum computers follow different rules than classical computers - those of quantum physics.

Bit vs. Qubit (quantum bit)

A bit can be either 0 or 1, while a qubit can be in a superposition: qubit can be both 0 and 1 at the same time. Measurement will yield either 0 or 1.

Two qubits can be entangled. Changing one directly impacts the other.

Classical computer vs. Quantum computer

Quantum computers follow different rules than classical computers - those of quantum physics.

Bit vs. Qubit (quantum bit)

A bit can be either 0 or 1, while a qubit can be in a superposition: qubit can be both 0 and 1 at the same time. Measurement will yield either 0 or 1.

Two qubits can be entangled. Changing one directly impacts the other.

- → Exponential increase in computational capacity
- → Enables new algorithms and solutions to previously intractable problems

"Quantum Parallelism"

• Bit is replaced by qubit in quantum computing. n qubits represent up to 2^n different states simultaneously.

n	2^n
1	2
10	1,024
20	1,048,576
30	1,073,741,824
40	1,099,511,627,776
50	$1,125,899,906,842,624 \sim 10^{15}$
60	~ 10 ¹⁸
70	$\sim 10^{21}$
80	$\sim 10^{24}$
90	~ 10 ²⁷
100	~ 10 ³⁰
1,000	~ 10 ³⁰¹

Eddington number $\sim 10^{80}$. The number of atoms in the visible universe.

Computational Complexity

A suitable measure for complexity

- In general, the effort required in terms of memory or time can be determined
- Time is often the limiting factor

A suitable measure for complexity

- In general, the effort required in terms of memory or time can be determined
- Time is often the limiting factor
- The complexity is specified depending on the input size, but independently of the specific hardware

•
$$T(n) = (n^2)! \cdot 4^{n^2}$$

- The O notation O(...) is widely used
 - $T(n) \in O((n^2)! \cdot 4^{n^2})$
- In most cases, it is not the exact effort that is relevant, but the order of magnitude
 - O(5n+1) = O(n)
 - $O(2n^2 + n) = O(n^2)$

Complexity of algorithms

Notation	Туре	Example
O(1)	constant	Add an item to the end of a list
O(n)	Linear	Finding an item in an unsorted list
O(nc)	Polynomial	Bubble Sort
O(c _n)	Exponential	Traveling Salesman Problem, using dynamic programming
O(n!)	Factorial	Traveling Salesman Problem, using brute force

Complexity of algorithms

	n	n²	2 ⁿ	n!
n=10	< 1s	< 1s	< 1s	4s
n=30	< 1s	< 1s	18 m	10 ²⁵ y
n=50	< 1s	< 1s	36 y	Very long
n=100	< 1s	< 1s	10 ¹⁷ y	Very long
n=1000	< 1s	1s	Very long	Very long
n=10000	< 1s	2 m	Very long	Very long
n=100000	< 1s	3 h	Very long	Very long
n=100000 0	1s	12 d	Very long	Very long

Assuming one Million Instructions per second (MIPS)

The power of one Motorola 68000 (current processors have 100 000 MIPS)

Computational Complexity

- P: Solved in polynomial time.
- NP: Verified in polynomial time.
- NP-complete: Most difficult in NP.
- NP-hard: At least as difficult as NP-complete. (Find the best solution among the NP-complete solutions, for example.)
- BQP (Bounded error, Quantum, Polynomial time): Solvable in polynomial time by a quantum computer.

Caution: Not All Algorithms Can Be Improved

- A physical system cannot be an all-purpose computer (pendulum/spaghetti).
- A quantum computer makes use of wave nature of quantum states. There are interference, superposition and entanglement associated with this. They do not exist in a classical (i.e., digital) computer.
- Typical quantum algorithm; Grover's database search, Shor's factorization. They
 require a full-fledged quantum computer with built-in quantum error correction
 (QECC).
- Currently available quantum computers, including the IQM quantum computer, are called the NISQ (Noisy Intermediate-Scale Quantum) computer. <1000 QB, no QECC. They are often used for the quantum-classical hybrid computation such as the Variational Quantum Eigensolver (VQE).

Brief Summary of IQM Quantum Computer

Summary

Summary

- Physical system may be employed for information processing and computation.
- Quantum computing employs the law of quantum physics to store, process and transfer information.
- Quantum physics describes a microscopic system such as an electron, an atom and a photon. These systems are hard to control and measure.
- Thanks to the progress of nanotechnology, we can fabricate nanoscale devices that follow the law of quantum mechanics.
- Superconducting qubit in IQM quantum computer is an example of such systems.
- Currently available quantum computer is called NISQ (Noisy Intermediate-Scale Quantum) computer. No QECC (N). <1000 qubits (IS).
- We will see how quantum information processing is different from and superior to classical one in the following lectures.

Practical notes

Outline of the course

Lecture	Title	Presentation	Exercises
1	Introduction to Quantum Computing	PPTX PDF	LaTeX PDF
2	Quantum States and Quantum Operations	PPTX PDF	LaTeX PDF
3	Introduction to Quantum Algorithms	PPTX PDF	LaTeX PDF
4	Transpiling, compiling and optimizing quantum circuits	PPTX PDF	LaTeX PDF
5	Quantum Algorithms: Grover's search	PPTX PDF	LaTeX PDF
6	Variational quantum algorithms	PPTX PDF	LaTeX PDF
7	Error Reduction Strategies	PPTX PDF	LaTeX PDF
8	Benchmarking quantum computers	PPTX PDF	LaTeX PDF
9	Quantum Algorithms: Shor's Algorithm	PPTX PDF	LaTeX PDF
10	Data Encoding and Quantum Machine Learning	PPTX PDF	LaTeX PDF
11	Quantum Hardware and Architectures	PPTX PDF	LaTeX PDF
12	Quantum Error Correction and the Future of Quantum Computing	PPTX PDF	LaTeX PDF

—This course ...

- ... is intended to be an introduction to the computing (not the physics aspects) of a quantum computer
- ... assumes you get actively engage with the lectures and the exercises
- ... uses grisp as the SDK for developing quantum algorithms
- ... assumes access to quantum computers via IQM Resonance (freemium available) / IQM Server (on-prem users)
- ... is supported by the material and applets on IQM Academy

-qrisp

- qrisp is a high level programming framework for working with quantum computing programs
- It's pythonic
- It's open source

grisp.eu

https://github.com/eclipse-qrisp/Qrisp
pip install "qrisp[iqm]"

Features of qrisp (you will learn about these throughout the course)

Typed quantum variables

automatic Uncomputation,i.e. Garbage Collection

Modularity

Arithmetics

Compatibility and interoperability

Works with IQM hardware

There are different quantum computing frameworks, but qrisp will enable you to learn what matters


```
from qrisp import QuantumFloat
n = 6
a = QuantumFloat(n)
b = QuantumFloat(n)
a[:] = 3
b[:] = 4
res = a*b
print(res)
#Yields: {12: 1.0}
```

```
from giskit import (QuantumCircuit, QuantumRegister,
ClassicalRegister, Aer, execute)
from qiskit.circuit.library import RGQFTMultiplier
n = 6
a = QuantumRegister(n)
b = QuantumRegister(n)
res = QuantumRegister(2*n)
cl res = ClassicalRegister(2*n)
gc = QuantumCircuit(a, b, res, cl_res)
for i in range(len(a)):
    if 3 & 1<<i: qc.x(a[i])
for i in range(len(b)):
    if 4 & 1<<i: qc.x(b[i])
qc.append(RGQFTMultiplier(n, 2*n),
list(a) + list(b) + list(res))
qc.measure(res, cl_res)
backend = Aer.get_backend('gasm_simulator')
counts_dic = execute(qc, backend).result().get_counts()
print({int(k, 2) : v for k, v in counts_dic.items()})
#Yields: {12: 1024}
```

```
import pennylane as qml
import numpy as np
w_m = [0, 1, 2]
w_k = [3, 4, 5]
w_sol = [6, 7, 8, 9]
dev = qml.device("default.qubit", wires=w_m + w_k + w_sol, shots=1)
n_wires = len(dev.wires)
def add(k, wires):
    for j in range(len(wires)):
        qml_RZ(k * np_pi / (2**i), wires=wires[i])
def multiplication(w m, w k, w sol):
    qml.QFT(wires=w sol)
    for i in range(len(w k)):
        for j in range(len(w m)):
            coeff = 2 ** (len(w_m) + len(w_k) - i - j - 2)
            qml.ctrl(add,control=[w_k[i], w_m[j]])(coeff, w_sol)
    qml.adjoint(qml.QFT)(wires=w_sol)
@aml anode (dev)
def mul(m, k):
    gml.BasisEmbedding(m, wires=w_m)
    gml.BasisEmbedding(k, wires=w k)
    multiplication(w m, w k, w sol)
    return qml.sample(wires=w sol)
print(f"The ket representation of 3*7 is {mul(3,4)}")
#Yields: The ket representation of 3*7 is [10101]
```

IQM Resonance / IQM Server

- A platform to run and organize your quantum circuits.
- Made for education and research.
- Support for multiple frameworks (qrisp, qiskit, Cirq and more)

