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Why think about
different 

computing
paradigms?
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Sorting a list of numbers

8 2 5 3
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Sorting a list of numbers

2 8 5 3
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Sorting a list of numbers

2 3 5 8
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Thinking about new 

computing paradigms can 

lead to more efficient 

solutions
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Problem with current computers:

• Intractable problems

• Fundamental limits

• Time & power limits

“Latest findings suggest global computing is more likely 

responsible for between 2.1% and 3.9% of greenhouse 

gas emissions.“

Current approach is not scalable!

https://www.upi.com/Science_News/2021/09/10/communications-tech-

carbon-emissions/8771631295350/ 

There are problems, a classical computer 
cannot (efficiently) solve

https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
https://www.upi.com/Science_News/2021/09/10/communications-tech-carbon-emissions/8771631295350/
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• Computational complexity depends on the resource to implement the algorithm. 

• Physical systems may be employed for information processing. They sometimes 
give different computational complexity than digital information processing. 

  

• Quantum mechanics describes microscopic systems, such as electrons and 
photons. A state is represented by a complex vector and an operation by a matrix.

• Quantum information processing and quantum computation employ quantum 
systems to store and process information, which may reduce computational 
complexity for some tasks.

Overview

https://www.miraikan.jst.go.jp/exhibitions/future/internet/

Photos courtesy of 

Miraikan - The National 

Museum of Emerging 

Science and Innovation
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• Physics laws can be used for information processing/computation.

• Example: Evaluate the complete elliptic integral of the first kind 

      𝐾 𝑘 =                               . . 𝐾 𝑘 =
𝜋

2
σ𝑛=0
∞ [

2𝑛−1

2𝑛
]2𝑘2𝑛.

• Use physics. The period of a pendulum is 𝑇 = 4
𝐿

𝑔
𝐾 𝑘 , 𝑘 = sin

𝜃0

2
. 

Information is Physical. (R Landauer (IBM), 1991) 

• It may take a few minutes to set up a pendulum. 

It is much shorter than the time required to build 

a digital computer from scratch. 

• A physical system may be used as a  

computational resource. Its usage is limited in 

general though.

𝜃0

𝐿
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• Complexity depends on a system to implement an algorithm. 

• There are some algorithms whose complexity may be reduced if they are 
implemented with complex vectors and matrices acting on them.

• A quantum physics, the physics of the microscopic world, is described by complex 
vectors and matrices. Let’s use this system to execute such algorithms! 

Complexity depends on the device for processing
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• Semiconductor devices also employ quantum physics to design but 
there are too many electrons to show quantum properties.

• We need a single electron, a single nucleus or a single photon to 
process information quantum mechanically. Preparation, control and 
measurement of such systems are challenging though. 

Quantum Information Processing

• Thanks to the progress of nanotechnology, it 

is now possible to fabricate a nanoscopic 

system that follows the laws of quantum 

mechanics. Superconducting qubits 

(=quantum bit) employed in IQM quantum 

computers are an example of such devices.
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• Moore’s law: The number of transistors 

that can be packed into a CPU is 

expected to double every two years.

• The size of one memory will become as 

small as an atom. Then quantum nature 

will manifest itself. Computation 

becomes probabilistic. Good or bad? 

• Let’s use quantum nature to improve 

computational complexity.

Another Motivation for Quantum Computing

CC-BY 4.0 by Max Roser, Hannah Ritchie



Bits and Qubits
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Classical Computer vs. Quantum Computer

Quantum bit

Classical bit

2 distinct states

0

1

0

1

switch on/off

State can be 

measured 

repeatedly

Superposition of 

2 basis states

Point on the 

surface of a 

sphere

Measurement of 

the state will 

cause it to fall 

back to 0 and 1, 

no repeated 
measurement
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What is quantum computing?

Quantum computers follow different 

rules than classical computers – those 
of quantum physics. 

Classical computer vs. 

Quantum computer

A bit can be either 0 or 1, while a 

qubit can be in a superposition: qubit 
can be both 0 and 1 at the same time.
Measurement will yield either 0 or 1.

Bit vs. Qubit (quantum bit)

0

1

0

1

Two qubits can 

be entangled. 
Changing one 
directly impacts 

the other.

→ 1 qubit can be in a superposition 

of 2 basis states

→ A 1 bit state can be just one out 

them

1Qubit

Basis states:

- 0

- 1
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→ 2 qubits can be in a superposition 

of all 4 basis states

→ A 2-bit state can be just one out 

them

What is quantum computing?

Quantum computers follow different 

rules than classical computers – those 
of quantum physics. 

Classical computer vs. 

Quantum computer

A bit can be either 0 or 1, while a 

qubit can be in a superposition: qubit 
can be both 0 and 1 at the same time.
Measurement will yield either 0 or 1.

Bit vs. Qubit (quantum bit)

0

1

0

1

Two qubits can 

be entangled. 
Changing one 
directly impacts 

the other.

2 Qubits

1Qubit

2 Qubits

2 x basis 

states

Basis states:

- 00

- 01

- 10

- 11
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What is quantum computing?

Quantum computers follow different 

rules than classical computers – those 
of quantum physics. 

Classical computer vs. 

Quantum computer

A bit can be either 0 or 1, while a 

qubit can be in a superposition: qubit 
can be both 0 and 1 at the same time.
Measurement will yield either 0 or 1.

Bit vs. Qubit (quantum bit)

0

1

0

1

Two qubits can 

be entangled. 
Changing one 
directly impacts 

the other.

3Qubits

2 Qubits

3Qubits

1Qubit

2 Qubits

3Qubits

2 x basis 

states

2 x basis 

states

Basis states:

- 000

- 100

- 010

- 110
- 001

- 101

- 011

- 111

000         001         010         011   

100         101         110         111

3 qubits can be in a superposition of 
all 23 = 8 basis states

→ A 3-bit state can be just one of them
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What is quantum computing?

Quantum computers follow different 

rules than classical computers – those 
of quantum physics. 

Classical computer vs. 

Quantum computer

A bit can be either 0 or 1, while a 

qubit can be in a superposition: qubit 
can be both 0 and 1 at the same time.
Measurement will yield either 0 or 1.

Bit vs. Qubit (quantum bit)

0

1

0

1

Two qubits can 

be entangled. 
Changing one 
directly impacts 

the other.

50 Qubits
50 Qubits

3Qubits

300 Qubits

50 Qubits

2 Qubits

3Qubits

1Qubit

50 Qubits

2 Qubits

3Qubits

2 x basis 

states

2 x basis 

states

250 

states

Classical supercomputers 

hit a roadblock at 50 qubits 
(Technology Review)

300 Qubits300 Qubits300 Qubits51 Qubits000         001         010         011   

100         101         110         111

3 qubits can be in a superposition of 
all 23 = 8 basis states

→ A 3-bit state can be just one of them
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What is quantum computing?

Quantum computers follow different 

rules than classical computers – those 
of quantum physics. 

Classical computer vs. 

Quantum computer

A bit can be either 0 or 1, while a 

qubit can be in a superposition: qubit 
can be both 0 and 1 at the same time.
Measurement will yield either 0 or 1.

Bit vs. Qubit (quantum bit)

0

1

0

1

Two qubits can 

be entangled. 
Changing one 
directly impacts 

the other.

50 Qubits

300 Qubits

50 Qubits

3Qubits

300 Qubits

50 Qubits

2 Qubits

3Qubits

300 Qubits

1Qubit

50 Qubits

2 Qubits

3Qubits

300 Qubits

2 x basis 

states

2 x basis 

states

250 

states

2300 

states

Classical supercomputers 

hit a roadblock at 50 qubits 
(Technology Review)

→ Exponential increase in computational capacity

→ Enables new algorithms and solutions to previously intractable problems

000         001         010         011   

100         101         110         111

3 qubits can be in a superposition of 
all 23 = 8 basis states

→ A 3-bit state can be just one of them
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• Bit is replaced by qubit in quantum computing.  

   𝑛 qubits represent up to 2𝑛 different states 

   simultaneously.

“Quantum Parallelism” 𝒏 𝟐𝒏

1 2

10 1,024

20 1,048,576

30 1,073,741,824

40 1,099,511,627,776

50 1,125,899,906,842,624 ∼ 1015

60 ∼ 1018

70 ∼ 1021

80 ∼ 1024

90 ∼ 1027

100 ∼ 1030

1,000 ∼ 10301

Eddington number ∼ 1080. The number 

of atoms in the visible universe. 

1,099,511,627,776

1,073,741,824



Computational 
Complexity
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• In general, the effort required in terms of 
memory or time can be determined

• Time is often the limiting factor

A suitable measure for complexity

Sliced apple 

(space)

Apple compote 

(space)

Sliced apple 

(time)

Apple compote 

(time)

1 Person 3 Person

1 min 3 min

2 min 2 min
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• In general, the effort required in terms of 
memory or time can be determined

• Time is often the limiting factor

• The complexity is specified depending on the 
input size, but independently of the specific 
hardware

• 𝑇(𝑛) = (𝑛2)! ⋅ 4𝑛
2

• The O notation O(…) is widely used

• 𝑇 𝑛 ∈ O((𝑛2)! ⋅ 4𝑛
2
)

• In most cases, it is not the exact effort that is 
relevant, but the order of magnitude

• O 5𝑛 + 1 = 𝑂 𝑛

• O 2𝑛2 + 𝑛 = 𝑂 𝑛2

A suitable measure for complexity

Sliced apple 

(space)

Apple compote 

(space)

Sliced apple 

(time)

Apple compote 

(time)

1 Person 3 Person

1 min 3 min

2 min 2 min

𝑇 𝑛 = 3𝑛 ∈ 𝑂(𝑛) 

𝑇 𝑛 = 1 ∈ 𝑂(1) 
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Complexity of algorithms

25

Notation Type Example

O(1) constant Add an item to the end of a list

O(n) Linear Finding an item in an unsorted list

O(nc) Polynomial Bubble Sort

O(cn) Exponential Traveling Salesman Problem, using dynamic

programming

O(n!) Factorial Traveling Salesman Problem, using brute force
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Assuming one Million Instructions per second (MIPS)

The power of one Motorola 68000 (current processors have 100 000 MIPS)

Complexity of algorithms
n n² 2n n!

n=10 < 1s < 1s < 1s 4s

n=30 < 1s < 1s 18 m 1025y

n=50 < 1s < 1s 36 y Very long

n=100 < 1s < 1s 1017 y Very long

n=1000 < 1s 1s Very long Very long

n=10000 < 1s 2 m Very long Very long

n=100000 < 1s 3 h Very long Very long

n=100000

0

1s 12 d Very long Very long

https://de.wikipedia.org/wiki/Motorola_68000
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Computational Complexity

• P: Solved in polynomial time.

• NP: Verified in polynomial time.

• NP-complete: Most difficult in NP.

• NP-hard: At least as difficult as 

NP-complete. (Find the best 

solution among the NP-complete 

solutions, for example.)

• BQP (Bounded error, Quantum, 

Polynomial time): Solvable in 

polynomial time by a quantum 

computer.
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• A physical system cannot be an all-purpose computer (pendulum/spaghetti).

• A quantum computer makes use of wave nature of quantum states. There are 
interference, superposition and entanglement associated with this. They do not 
exist in a classical (i.e., digital) computer.

• Typical quantum algorithm; Grover’s database search, Shor’s factorization. They 
require a full-fledged quantum computer with built-in quantum error correction 
(QECC). 

• Currently available quantum computers, including the IQM quantum computer, are 
called the NISQ (Noisy Intermediate-Scale Quantum) computer. <1000 QB, no 
QECC. They are often used for the quantum-classical hybrid computation such as 
the Variational Quantum Eigensolver (VQE).

Caution: Not All Algorithms Can Be Improved
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Brief Summary of IQM Quantum Computer

10 mK



Summary
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• Physical system may be employed for information processing and computation.

• Quantum computing employs the law of quantum physics to store, process and 
transfer information.

• Quantum physics describes a microscopic system such as an electron, an atom 
and a photon. These systems are hard to control and measure. 

• Thanks to the progress of nanotechnology, we can fabricate nanoscale devices 
that follow the law of quantum mechanics.  

• Superconducting qubit in IQM quantum computer is an example of such systems.

• Currently available quantum computer is called NISQ (Noisy Intermediate-Scale 
Quantum) computer. No QECC (N).  <1000 qubits (IS). 

• We will see how quantum information processing is different from and superior to 
classical one in the following lectures. 

Summary



Practical notes



CONFIDENTIAL 

Outline of the course
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• … is intended to be an introduction to the computing (not the 
physics aspects) of a quantum computer

• … assumes you get actively engage with the lectures and the 
exercises

• … uses qrisp as the SDK for developing quantum algorithms

• … assumes access to quantum computers via IQM Resonance 
(freemium available) / IQM Server (on-prem users)

• … is supported by the material and applets on IQM Academy

This course …
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• qrisp is a high level programming 
framework for working with quantum 
computing programs

• It’s pythonic

• It’s open source

qrisp

https://github.com/eclipse-qrisp/Qrisp

qrisp.eu

pip install „qrisp[iqm]“

https://github.com/fraunhoferfokus/Qrisp
https://github.com/fraunhoferfokus/Qrisp
https://github.com/fraunhoferfokus/Qrisp
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Features of qrisp (you will learn about
these throughout the course)

Typed quantum variables

Modularity

Compatibility and

interoperability

Works with IQM hardware

Arithmetics

automatic Uncomputation, 

i.e. Garbage Collection
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There are different quantum computing frameworks, 
but qrisp will enable you to learn what matters
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• A platform to run and organize your 
quantum circuits.

• Made for education and research. 

• Support for multiple frameworks 
(qrisp, qiskit, Cirq and more)

IQM Resonance / IQM Server
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