
Fast Lane to Quantum Advantage

Qubit and chip design with
KQCircuits®

Technical Lead for QPU design

Alessandro Landra

github.com/iqm-finland/KQCircuits

Fast Lane to Quantum Advantage

Schedule

Monday Tuesday Wednesday Thursday Friday

Caspar & Pavel Alessandro Alessandro Niko & Eelis Caspar

Introduction to QPU
design

Installing KQCircuits

First look around

Introduction to
designing

Create a custom qubit
element

Design a custom chip Finite element
simulations

Mask export

Composite
waveguides GUI

Fast Lane to Quantum Advantage

Workshop format

Introductions + hands-on exercises

• Follow along

• Ask for help if you are stuck

Fast Lane to Quantum Advantage

Questions?!

Ask questions any time!

Raise hand (or just interrupt)

Zoom chat

Discord

Presentations are recorded

Fast Lane to Quantum Advantage 5

Design steps

FEM

simulations

Microwave
circuit

modelling

Hamiltonian
calculations

Geometry
building

Fast Lane to Quantum Advantage 6

Problem

• Design structures in a parametrized way

• Repeatability

• Shared platform

• Human errors

• Inefficiency

Fast Lane to Quantum Advantage 7

Concepts

• PCell Library

• Reference points

• Standard for layers

• Face

class Element(pya.PCellDeclarationHelper):

 """Element PCell declaration.

 PCell parameters for an element are defined as class attributes of Param type.

 Elements have ports.

 """

 LIBRARY_NAME = "Element Library"

 LIBRARY_DESCRIPTION = "Superconducting quantum circuit library for elements."

 LIBRARY_PATH = "elements"

 a = Param(pdt.TypeDouble, "Width of center conductor", 10, unit="μm")

 b = Param(pdt.TypeDouble, "Width of gap", 6, unit="μm")

 n = Param(pdt.TypeInt, "Number of points on turns", 64)

 r = Param(pdt.TypeDouble, "Turn radius", 100, unit="μm")

 margin = Param(pdt.TypeDouble, "Margin of the protection layer", 5, unit="μm")

 face_ids = Param(pdt.TypeList, "Chip face IDs list", ["1t1", "2b1", "1b1", "2t1"])

 display_name = Param(pdt.TypeString, "Name displayed in GUI (empty for default)", "")

 protect_opposite_face = Param(pdt.TypeBoolean, "Add opposite face protection too", False)

Fast Lane to Quantum Advantage 8

Concepts
• Face in details

Fast Lane to Quantum Advantage 9

Element Library

• Qubits

• SQUIDs

• Complex waveguides

• Coplanar capacitors

• Face-to-face connectors

• Alignment markers

• …

Fast Lane to Quantum Advantage 10

• Code use examples
• Fabrication test standards

Chip Library

Fast Lane to Quantum Advantage 11

Floating transmon and chip coding demo

Fast Lane to Quantum Advantage 12

• Two SC islands (1 is the inner, 2 is the outer) which
capacitively shunt the Josephson Junction or SQUID
(Lj).

• Islands size and distance between them determines
the charging energy, which depends on CSigma.

• We can add one (island 3) coupler or more to couple
the qubit to the readout resonator or other qubits.

• Example circuit (C13≈0)

Floating transmon qubit

=

2

1

3

Lj

Fast Lane to Quantum Advantage 13

Using PCell parameters in the concentric transmon class we want to be able to
control the following dimensions.Parametrized design

class ConcentricTransmon(Qubit):

 """The PCell declaration for a concentric transmon.

 A concentric transmon consists of two islands, one inner and one outer, connected by a Josephson Junction/s. Multiple

 couplers can be defined. They can have custom waveguide impedance, size and shape.

 Each coupler has reference points, numbered starting from 1. Driveline can be connected to the drive port.

 """

 # Qubit geometry

 r_inner = Param(pdt.TypeDouble, "Internal island radius", 120, unit="μm",

 docstring="Radius of the outer edge of the inner island")

 r_outer = Param(pdt.TypeDouble, "External island radius, measured at the outer edge", 250, unit="μm",

 docstring="Radius of the external qubit island")

 outer_island_width = Param(pdt.TypeDouble, "Outer island radial width", 80, unit="μm",

 docstring="Width of the external island")

 ground_gap = Param(pdt.TypeDouble, "Ground plane padding", 80, unit="μm")

 squid_angle = Param(pdt.TypeDouble, "Angular position of the Josephson Junction/s, where the positive x-axis is zero",

 120, unit="degrees")

 # Couplers parameters (the list size define the number of couplers)

 couplers_r = Param(pdt.TypeDouble, "Radius of the couplers positioning", 290, unit="μm")

 couplers_a = Param(pdt.TypeList, "Width of the coupler waveguide's center conductors", [10, 3, 4.5], unit="[μm]")

 couplers_b = Param(pdt.TypeList, "Width of the coupler waveguide's gaps", [6, 32, 20], unit="[μm]")

 couplers_angle = Param(pdt.TypeList,

 "Positioning angles of the couplers, where 0deg corresponds to positive x-axis",

 [340, 60, 210], unit="[degrees]")

 couplers_width = Param(pdt.TypeList, "Radial widths of the arc couplers", [10, 20, 30], unit="[μm]")

 couplers_arc_amplitude = Param(pdt.TypeList, "Couplers angular extension", [35, 45, 15], unit="[degrees]")

 # Drive port parameters

 drive_angle = Param(pdt.TypeDouble, "Angle of the drive port, where 0deg corresponds to positive x-axis", 300,

 unit="degrees")

 drive_distance = Param(pdt.TypeDouble, "Distance of the driveline, measured from qubit centre", 400, unit="µm")

Fast Lane to Quantum Advantage 14

Build function

def build(self):

 self.x_end = self.r_outer + self.ground_gap # Define the outermost qubit coordinate

 # Generate the qubit islands (they are the negative shape of the final geometry)

 qubit_negative = self._make_qubit_islands()

 # Generate the coupler islands

 coupler_islands_region = self._make_coupler_island()

 # Add the waveguides connecting the couplers to external waveguides

 waveguide, waveguide_gap = self._make_waveguides()

 # Add the Josephson Junction/s

 self._add_junction(qubit_negative)

 # Define the capacitor in the ground (final polarity)

 ground_region = self._make_ground_region()

 qubit = ground_region - qubit_negative + waveguide_gap - coupler_islands_region - \

 waveguide # Operations order is important!

 self.cell.shapes(self.get_layer("base_metal_gap_wo_grid")).insert(qubit)

 # Protection region from the ground grid

 region_protection = self._get_protection_region(ground_region)

 self.cell.shapes(self.get_layer("ground_grid_avoidance")).insert(region_protection)

 # Couplers and driveline ports

 self._add_ports()

• In the previous pictures, the blue colored area
represent the etched gap and not the metal.

• We want to draw the metal Regions instead, then
subtract them from a round ground plane region
(blue).

• In order we will make the qubit island (as positive
regions), the n-couplers islands, the connecting n-
waveguides and then subtracting all of them from a
circular (blue) ground region, basically defining our
qubit picture.

• Finally, we will add the JJ or SQUID, the protection
region from the automatic ground holes grid
generation and the ports (refpoints with a direction) to
connect ports and waveguides seamlessly.

Fast Lane to Quantum Advantage 15

Let’s now code the functions together

def _make_arc_island(self, island_outer_radius, island_width, swept_angle):

 # Generate a polygon arc of any size and angle

 angle_rad = math.radians(swept_angle)

 points_outside = arc_points(island_outer_radius, ..., ..., ...)

 points_inside = arc_points(island_outer_radius - island_width, ..., ..., ...)

 points = ...

 arc_island = ...

 return arc_island

def _make_qubit_islands(self):

 # Generate a region of the qubit shunting capacitor

def _add_junction(self, region):

 # Add the junction to the qubit islands

def _make_coupler_island(self):

 # Generate the regions of the coupler islands.

def _make_ground_region(self):

 # Generate the ground region as a filled circle of the maximum size

def _make_waveguides(self):

 # Make the waveguides for each coupler with custom impedance and return the region

def _add_ports(self):

 # Add couplers ports

def _get_protection_region(self, region):

 # Region which we don't want to cover with the automatically generated ground grid

We will now use the concentric_transmon.py file which is partially written.

Fast Lane to Quantum Advantage 16

• Two concentric transmon qubits connected by a fixed
frequency resonator bus.

• Each concentric transmon should have two couplers.

• Each concentric transmon is read out by its own
readout resonator.

• The readout resonators are multiplexed to the same
feedline.

Two coupled transmons

Fast Lane to Quantum Advantage 17

Using PCell parameters in the demo chip class we want to be able to control
the following dimensions.Parametrized design

class ConcentricQubitsDemo(Chip):

 """Demonstration chip with two concentric qubits, two readout resonators, one probe line,

 two drivelines and one resonant coupler."""

 name_chip = Param(pdt.TypeString, "Name of the chip", "WS1")

 readout_res_lengths = Param(pdt.TypeList, "Readout resonator lengths", [8000, 10000], unit="[μm]")

 kappa_finger_control = Param(pdt.TypeList, "Finger control for the input capacitor",

 default=[1.99, 2.035], unit="[μm]")

 coupler_length = Param(pdt.TypeDouble, "Resonant coupler length", 10000)

 couplers_a = Param(pdt.TypeList, "Width of the coupler waveguide's center conductors", [[10, 3], [10, 3]],

 unit="[μm]")

 couplers_b = Param(pdt.TypeList, "Width of the coupler waveguide's gaps", [[6, 32], [6, 32]], unit="[μm]")

 couplers_angle = Param(pdt.TypeList,

 "Positioning angles of the couplers, where 0deg corresponds to positive x-axis",

 [[225, 315], [315, 225]], unit="[degrees]")

 couplers_width = Param(pdt.TypeList, "Radial widths of the arc couplers", [[10, 10], [10, 10]], unit="[μm]")

 couplers_arc_amplitude = Param(pdt.TypeList, "Couplers angular extension", [[35, 55], [55, 45]],

unit="[degrees]")

 drive_line_offsets = Param(pdt.TypeList, "Distance between the end of a drive line and the qubit pair",

[450.0] * 2)

Fast Lane to Quantum Advantage 18

Let’s now code the functions together
We will now use the concentric_transmon_demo_chip.py file which is partially written.

def build(self):

 # Define launchpads positioning and function

 launcher_assignments = {

 1: "DL-QB1",

 2: "DL-QB2",

 5: "PL-OUT",

 6: "PL-IN",

 }

 # Use an 8 port default launcher

 self.produce_launchers("SMA8", launcher_assignments)

 self.produce_qubits()

 self.produce_coupler()

 self.produce_drivelines()

 self.produce_probeline()

 self.produce_readout_resonators()

def produce_qubits(self):

 # Position the qubits

def produce_coupler(self):

 # Insert a fixed coupler of a variable meander size in between qubits

def produce_probeline(self):

def produce_drivelines(self):

 # Connect the drivelines to the qubit ports

def produce_readout_resonators(self):

 # Break down the resonator in few parts for simplicity

Fast Lane to Quantum Advantage 19

What if we want a three qubits chip?
You can try to code a three qubits processor:

• Use the existing chip design

• Add a third readout resonator in the probeline

• Connect the qubit to the readout resonator

• Either connect the three qubits with two meanders, or delete the existing meander to make three directly coupled qubits

• Don’t forget to change the launcher assignment and add a new driveline to play with the added qubit!

Fast Lane to Quantum Advantage 20

Thank you for your participation!

	Slide 1: Qubit and chip design with KQCircuits®
	Slide 2: Schedule
	Slide 3: Workshop format
	Slide 4: Questions?!
	Slide 5: Design steps
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Floating transmon qubit
	Slide 13: Parametrized design
	Slide 14: Build function
	Slide 15: Let’s now code the functions together
	Slide 16: Two coupled transmons
	Slide 17: Parametrized design
	Slide 18: Let’s now code the functions together
	Slide 19: What if we want a three qubits chip?
	Slide 20

