

Winter School Superconducting quantum processor design with KQCircuits

github.com/iqm-finland/KQCircuits

Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
Caspar & Pavel	Alessandro	Alessandro	Niko & Eelis	Caspar
Introduction to QPU design Installing KQCircuits First look around	Introduction to designing Create a custom qubit element	Design a custom chip	Finite element simulations	Mask export Composite waveguides GUI

Workshop format

Introductions + hands-on exercises

- Follow along
- Ask for help if you are stuck

Questions?!

Ask questions any time!

Raise hand (or just interrupt)

Zoom chat

Discord

Presentations are recorded

Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
Caspar & Pavel	Alessandro	Alessandro	Niko & Eelis	Caspar
Introduction to QPU design Installing KQCircuits First look around	Introduction to designing Create a custom qubit element	Design a custom chip	Finite element simulations	Mask export Composite waveguides GUI

Introduction to superconducting quantum processor design

Team leader, Design and Simulation team

Outline

- QPU design process
- What is KQCircuits
- Some QPU elements
 - Transmon qubit
 - Waveguide resonator
 - Coupling

Superconducting Quantum processing unit

- Slab of Si covered by metal film
- Geometry etched to the film
- Consists of elements
 - Qubits
 - Couplers
 - Readout resonators
 - Drivelines and fluxlines
 - Probelines

QPU design process

Fast Lane to Quantum Advantage

9

What is KQCircuits?

- An open-source framework for designing superconducting circuit geometry
- Libraries of standard, usable Elements and Chips
- Focus on parametrized design enables large scale and reusable designs
- Integrates with finite element simulation tools
- Tools for quality control: design rules, netlist export, FEM simulations

What is KQCircuits?

Parametrized Elements

Example Chips

Mask Layout generation

Export to Finite Element simulations Ansys (HFSS, Q3D) Sonnet Elmer (open source)

Validation tools
Netlist export
Design rule check

QPU Elements

From Hamiltonian to circuit

Further reading:

P Krantz et al, *A quantum engineer's guide to superconducting qubits*, Applied Physics Reviews **6**, 021318 (2019)

J. Koch et al, *Charge insensitive qubit design derived from the Cooper pair box,* Phys. Rev. A 76, 042319 (2007)

LC resonator

$$H_r = 4E_C n^2 + \frac{1}{2}E_L \phi^2$$

Resonance frequency:

$$\hbar\omega_r = \sqrt{8 E_L E_C}$$

$$E_C = \frac{e^2}{2C}, \quad E_L = \frac{1}{L} \left(\frac{\Phi_0}{2\pi}\right)^2$$

$$\omega_r = 1/\sqrt{LC}$$

Transmon qubit

$$H_q = 4E_C n^2 - E_J \cos(\phi)$$

Qubit frequency:
$$\hbar\omega_q^{0\to 1} \approx \sqrt{8 E_J E_C} - E_C$$

Anharmonicity:
$$\alpha = \omega_q^{1 \to 2} - \omega_q^{0 \to 1} \approx -E_C/\hbar$$

Transmon regime: $E_I/E_C \ge 50$

$$E_C = \frac{e^2}{2C_{\Sigma}}, \quad E_J = \frac{I_c \Phi_0}{2\pi}$$

Transmon qubit

$$H_q = 4E_C n^2 - E_J \cos(\phi)$$

Qubit frequency: $\hbar\omega_q^{0\to 1} \approx \sqrt{8 E_J E_C} - E_C$

Anharmonicity: $\alpha = \omega_q^{1 \to 2} - \omega_q^{0 \to 1} \approx -E_C/\hbar$

Transmon regime: $E_I/E_C \ge 50$

Single-island Transmon

Qubit-resonator coupling

Jaynes-Cummings Hamiltonian (two-level qubit):

$$H_{JC} = \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{1}{2} \omega_q \sigma_z + g \left(\sigma_+ a + \sigma_- a^{\dagger} \right)$$

Weak capacitive coupling $C_g \ll C_{\Sigma}$, Transmon limit:

$$\hbar g = \frac{C_g}{C_{\Sigma}} \sqrt{2} e V_{rms}^0 \left(\frac{E_J}{8E_C}\right)^{\frac{1}{4}}$$

LC Resonator vacuum voltage fluctuations:

$$V_{rms}^{0} = \sqrt{\frac{\hbar Z_0}{2}} \, \omega_r, \qquad Z_0 = \sqrt{L/C}$$

Waveguide resonator

Transmission line characterized by L_s and \mathcal{C}_s per unit length:

$$Z_0 = \sqrt{L_s/C_s}$$

$$c_{\text{eff}} = 1/\sqrt{L_s C_s}$$

$$\epsilon_{\text{eff}} = L_s C_s c^2$$

 $\lambda/2$ resonator vacuum voltage fluctuations:

$$V_{rms}^{0} = \sqrt{\frac{2}{\pi}} \sqrt{\frac{\hbar Z_0}{2}} \omega_r,$$

Two-island Transmon

 C_{Σ} is the total capacitance across the junction:

$$C_{\Sigma} = C_{12} + \left(\frac{1}{C_{i1}} + \frac{1}{C_{i2}}\right)^{-1}$$

Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
Caspar & Pavel	Alessandro	Alessandro	Niko & Eelis	Caspar
Introduction to QPU design Installing KQCircuits First look around	Introduction to designing Create a custom qubit element	Design a custom chip	Finite element simulations	Mask export Composite waveguides GUI